Tuesday, March 24, 2009

矩阵求逆在3D程序中很常见,主要应用于求Billboard矩阵。按照定义的计算方法乘法运算,严重影响了性能。在需要大量Billboard矩阵运算时,矩阵求逆的优化能极大提高性能。这里要介绍的矩阵求逆算法称为全选主元高斯-约旦法。

高斯-约旦法(全选主元)求逆的步骤如下:

首先,对于 k 从 0 到 n - 1 作如下几步:

从第 k 行、第 k 列开始的右下角子阵中选取绝对值最大的元素,并记住次元素所在的行号和列号,在通过行交换和列交换将它交换到主元素位置上。这一步称为全选主元。
m(k, k) = 1 / m(k, k)
m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k
m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k
m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k
最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复的原则如下:在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。

实现(4阶矩阵)

float Inverse(CLAYMATRIX& mOut, const CLAYMATRIX& rhs)
{
CLAYMATRIX m(rhs);
DWORD is[4];
DWORD js[4];
float fDet = 1.0f;
int f = 1;

for (int k = 0; k <>
{
// 第一步,全选主元
float fMax = 0.0f;
for (DWORD i = k; i <>
{
for (DWORD j = k; j <>
{
const float f = Abs(m(i, j));
if (f > fMax)
{
fMax = f;
is[k] = i;
js[k] = j;
}
}
}
if (Abs(fMax) <>
return 0;
if (is[k] != k)
{
f = -f;
swap(m(k, 0), m(is[k], 0));
swap(m(k, 1), m(is[k], 1));
swap(m(k, 2), m(is[k], 2));
swap(m(k, 3), m(is[k], 3));
}
if (js[k] != k)
{
f = -f;
swap(m(0, k), m(0, js[k]));
swap(m(1, k), m(1, js[k]));
swap(m(2, k), m(2, js[k]));
swap(m(3, k), m(3, js[k]));
}

// 计算行列值
fDet *= m(k, k);

// 计算逆矩阵

// 第二步
m(k, k) = 1.0f / m(k, k);
// 第三步
for (DWORD j = 0; j <>
{
if (j != k)
m(k, j) *= m(k, k);
}
// 第四步
for (DWORD i = 0; i <>
{
if (i != k)
{
for (j = 0; j <>
{
if (j != k)
m(i, j) = m(i, j) - m(i, k) * m(k, j);
}
}
}
// 第五步
for (i = 0; i <>
{
if (i != k)
m(i, k) *= -m(k, k);
}
}

for (k = 3; k >= 0; k --)
{
if (js[k] != k)
{
swap(m(k, 0), m(js[k], 0));
swap(m(k, 1), m(js[k], 1));
swap(m(k, 2), m(js[k], 2));
swap(m(k, 3), m(js[k], 3));
}
if (is[k] != k)
{
swap(m(0, k), m(0, is[k]));
swap(m(1, k), m(1, is[k]));
swap(m(2, k), m(2, is[k]));
swap(m(3, k), m(3, is[k]));
}
}

mOut = m;
return fDet * f;
}
原算法 原算法(经过高度优化) 新算法
加法次数 103 61 39
乘法次数 170 116 69
需要额外空间 16 * sizeof(float) 34 * sizeof(float) 25 * sizeof(float)

Friday, March 6, 2009

Pseudocode of Gaussian Elimination

i := 1
j := 1
while (i ≤ m and j ≤ n) do
  Find pivot in column j, starting in row i:
  maxi := i
  for k := i+1 to m do
    if abs(A[k,j]) > abs(A[maxi,j]) then
      maxi := k
    end if
  end for
  if A[maxi,j] ≠ 0 then
    swap rows i and maxi, but do not change the value of i
    Now A[i,j] will contain the old value of A[maxi,j].
    divide each entry in row i by A[i,j]
    Now A[i,j] will have the value 1.
    for u := i+1 to m do
      subtract A[u,j] * row i from row u
      Now A[u,j] will be 0, since A[u,j] - A[i,j] * A[u,j] = A[u,j] - 1 * A[u,j] = 0.
    end for
    i := i + 1
  end if
  j := j + 1
end while

Algorithm for Gauss-Jordan elimination in Matlab

function [A, k] = rref (A, tolerance)

## Supress empty list warnings
eleo = empty_list_elements_ok;
unwind_protect
empty_list_elements_ok = 1;

[rows,cols] = size (A);

if (nargin < 2)
tolerance = eps * max (rows, cols) * norm (A, inf);
endif

used = zeros(1,cols);
r = 1;
for c=1:cols
## Find the pivot row
[m, pivot] = max (abs (A (r:rows, c)));
pivot = r + pivot - 1;

if (m <= tolerance)
## Skip column c, making sure the approximately zero terms are
## actually zero.
A (r:rows, c) = zeros (rows-r+1, 1);

else
## keep track of bound variables
used (1, c) = 1;

## Swap current row and pivot row
A ([pivot, r], c:cols) = A ([r, pivot], c:cols);

## Normalize pivot row
A (r, c:cols) = A (r, c:cols) / A (r, c);

## Eliminate the current column
ridx = [1:r-1, r+1:rows];
A (ridx, c:cols) = A (ridx, c:cols) - A (ridx, c) * A(r, c:cols);

## Check if done
if (r++ == rows) break; endif
endif
endfor
k = find(used);

unwind_protect_cleanup
## Restore state
empty_list_elements_ok = eleo;
end_unwind_protect
endfunction