矩阵求逆在3D程序中很常见,主要应用于求Billboard矩阵。按照定义的计算方法乘法运算,严重影响了性能。在需要大量Billboard矩阵运算时,矩阵求逆的优化能极大提高性能。这里要介绍的矩阵求逆算法称为全选主元高斯-约旦法。
高斯-约旦法(全选主元)求逆的步骤如下:
首先,对于 k 从 0 到 n - 1 作如下几步:
从第 k 行、第 k 列开始的右下角子阵中选取绝对值最大的元素,并记住次元素所在的行号和列号,在通过行交换和列交换将它交换到主元素位置上。这一步称为全选主元。
m(k, k) = 1 / m(k, k)
m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k
m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k
m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k
最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复的原则如下:在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。
实现(4阶矩阵)
float Inverse(CLAYMATRIX& mOut, const CLAYMATRIX& rhs){CLAYMATRIX m(rhs);DWORD is[4];DWORD js[4];float fDet = 1.0f;int f = 1;for (int k = 0; k <>{// 第一步,全选主元float fMax = 0.0f;for (DWORD i = k; i <>{for (DWORD j = k; j <>{const float f = Abs(m(i, j));if (f > fMax){fMax = f;is[k] = i;js[k] = j;}}}if (Abs(fMax) <>return 0;if (is[k] != k){f = -f;swap(m(k, 0), m(is[k], 0));swap(m(k, 1), m(is[k], 1));swap(m(k, 2), m(is[k], 2));swap(m(k, 3), m(is[k], 3));}if (js[k] != k){f = -f;swap(m(0, k), m(0, js[k]));swap(m(1, k), m(1, js[k]));swap(m(2, k), m(2, js[k]));swap(m(3, k), m(3, js[k]));}// 计算行列值fDet *= m(k, k);// 计算逆矩阵// 第二步m(k, k) = 1.0f / m(k, k);// 第三步for (DWORD j = 0; j <>{if (j != k)m(k, j) *= m(k, k);}// 第四步for (DWORD i = 0; i <>{if (i != k){for (j = 0; j <>{if (j != k)m(i, j) = m(i, j) - m(i, k) * m(k, j);}}}// 第五步for (i = 0; i <>{if (i != k)m(i, k) *= -m(k, k);}}for (k = 3; k >= 0; k --){if (js[k] != k){swap(m(k, 0), m(js[k], 0));swap(m(k, 1), m(js[k], 1));swap(m(k, 2), m(js[k], 2));swap(m(k, 3), m(js[k], 3));}if (is[k] != k){swap(m(0, k), m(0, is[k]));swap(m(1, k), m(1, is[k]));swap(m(2, k), m(2, is[k]));swap(m(3, k), m(3, is[k]));}}mOut = m;return fDet * f;}
原算法 原算法(经过高度优化) 新算法
加法次数 103 61 39
乘法次数 170 116 69
需要额外空间 16 * sizeof(float) 34 * sizeof(float) 25 * sizeof(float)
No comments:
Post a Comment